Characterization of an NPN Bipolar Junction Transistor (BJT)

Components:

<table>
<thead>
<tr>
<th>Kit Part #</th>
<th>Spice Part Name</th>
<th>Part Description</th>
<th>Symbol Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3904</td>
<td>Q2N3904</td>
<td>NPN Bipolar Junction Transistor (BJT)</td>
<td>Q1</td>
</tr>
<tr>
<td>Resistor</td>
<td>R</td>
<td>100kΩ Resistor</td>
<td>RB</td>
</tr>
<tr>
<td>Resistor</td>
<td>R</td>
<td>1kΩ Resistor</td>
<td>RC</td>
</tr>
</tbody>
</table>

Table 1.1

Objectives:
- To characterize a BJT using the Tektronix Model 571 Curve Tracer
- To characterize the base-emitter pn-junction (BEJ) and base-collector pn-junction (BCJ) of a BJT using the Tektronix Model 571 Curve Tracer
- To characterize a BJT using a Power Supply & Keithley Model 175 DMM
- To compare measured characterization results to manufacturer specifications

Prelab: (Submit electronically prior to lab meeting, also have a printed copy for yourself during lab)
1. Read through lab, generate an equipment list.
2. Create a table called: Table P.1 with the following cell headings:

<table>
<thead>
<tr>
<th>Calculated Values</th>
<th>Simulated Values</th>
<th>Measured Values</th>
</tr>
</thead>
</table>

3. Build & simulate the circuit in figure P.1 using SPICE
 a) Using the “Parametric Sweep Simulation of a BJT” SPICE tutorial on the lab website to generate an IV Curve (I_C vs V_CE) for the 2N3904 BJT transistor:
 b) Sweep V_CE from 0 to 10V, in .2V increments
 c) Set I_B to be the “parameter” and step it from 10μ to 50μA in 20μA steps
 d) Use a current probe to plot I_C vs. V_CE at each step of I_B to generate 3 curves
 e) Place markers at V_CE=2V on each curve
 f) Record the values for: V_CE, I_C, and I_B from the curve markers in Table P.1, the values for V_BE will be found in step i)
 g) Delete the I_C current probe & place a voltage probe at node V_B as shown in fig P.2
 h) Re-run the same simulation, place markers at V_CE=2V on each curve
 i) Record the values for: V_BE, from the curve markers in Table P.1
 j) Calculate the value of the DC current gain (beta = I_C / I_B) for each row of table P.1
4. Use equation P.1 to calculate I_C and record the values in the “calculated value” section of table P.1
 a) Calculate I_C for each value of V_{BE} collected in step 3
 b) Assume $I_S = 6.734\text{fA}$, and the typical value for $V_T \approx 26\text{mA}$ (thermal voltage)
 c) Calculate the value of the DC current gain ($\beta = I_C / I_B$) for each row of table P.1

$$I_C \equiv I_S \left(\frac{V_{BE}}{e^{\frac{V_T}{V}}} \right)$$

Equation P.1 – Collector Current of NPN BJT in the active region of operation (Assumptions: $V_A >> V_{CE}$ and $n=1$)

5. In the simulation above, we have swept V_{CE} from 0 to 10V, and I_B from 10µ to 50µA. But the 2N3904 BJT can handle a significantly higher set of values. From the specification sheet for the 2N3904 BJT, gather the following specifications:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (with units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Collector-Emitter Voltage (V_{CEO})</td>
<td></td>
</tr>
<tr>
<td>Maximum Emitter-Base Voltage (V_{EBO})</td>
<td></td>
</tr>
<tr>
<td>Maximum Continuous Collector Current (I_C)</td>
<td></td>
</tr>
<tr>
<td>Maximum Collector-Base Voltage (V_{CBO})</td>
<td></td>
</tr>
<tr>
<td>Maximum DC Current Gain (β or h_{FE})</td>
<td></td>
</tr>
<tr>
<td>Base-Emitter ON Voltage (V_{BE}) when $V_{CE}=5V$ and $I_C=10mA$ at room temperature (note: see graph section of spec)</td>
<td></td>
</tr>
</tbody>
</table>
LAB:

Part I – Transistor Characterization using a Curve Tracer:

Generating an I_C vs. V_{CE} IV-Curve for the BJT:

a. Allow the GTA to demonstrate using the Tektronix Model 571 Curve Tracer for an NPN device.

b. Set the Tektronix Model 571 Curve Tracer to generate 3 IV-curves for the 2N3904 Transistor with the following limits:
 - Limit I_C to be no greater than 10mA
 - Set V_{CE} to be swept from 0 to 10V
 - Step I_B from 10μA to 50μA in 20μA steps to generate the 3 curves
 - Print the resulting family of curves, annotate I_B on each curve (by hand), and indicate the limits of your setup in the lab write-up. Be sure to scan the printout into your lab write-up.

Generating the IV-Curve for BEJ and CEJ for the BJT pn-junctions:

c. Set the Tektronix Model 571 Curve Tracer to generate the forward IV characteristic curve for the Base-Emitter Junction of the 2N3904 Transistor.
 - Determine the limits for the B-E junction using the manufacturer specification sheet as done in lab 1
 - Print the resulting curve, indicate the voltage & current limits and scan the printout into your lab write-up

d. Set the Tektronix Model 571 Curve Tracer to generate the forward IV characteristic curve for the Base-Collector Junction of the 2N3904 Transistor.
 - Determine the limits for the B-E junction using the manufacturer specification sheet as done in lab 1
 - Print the resulting curve, indicate the voltage & current limits and scan the printout into your lab write-up
Part II – Transistor Characterization Using a Test Circuit - Generating the I_C vs. V_{CE} family of IV-Curves for a BJT:

In this lab, you will generate only 3 IV-Curves (I_C vs. V_{BE}) as you did in the prelab. I_B will be the ‘parameter’ whose value will step from $I_B=10\mu A$ to $50\mu A$ in $20\mu A$ steps.

In the prelab you generated an IV-Curve for the 2N3904 using the schematic in figure P.1. You were able to generate base current I_B in the range of 0 to $50\mu A$. In the lab, the power supply can behave as a current source, but it cannot produce a current as small as $50\mu A$. To create the same family of IV-Curve in the lab, we must use the circuit in figure L.1. The voltage source combined with the $100k\Omega$ resistor at the base will behave as the 0 to $50\mu A$ current source from figure P.1.

The data collected during this section of lab is to be recorded under the “Measured Values” section of Table P.1

Measuring the $I_B=10\mu A$ curve

a. Build the circuit depicted in figure L.1 using the 2N3904 BJT
b. Measure the exact resistance of R_B using the Ohm meter, record this value
c. Measure the exact resistance of R_C using the Ohm meter, record this value
d. Use a DMM to measure the voltage at node V_B in the circuit L.1, this is V_{BE}
e. Use a DMM to measure the voltage at node V_C in the circuit L.1, this is V_{CE}
f. Adjust V_{CC} until V_{CE} equals 2V
g. Adjust V_{BB} until V_{BE} equals the value found in prelab when $I_B=10\mu A$ & $V_{CE}=2V$
h. Now, readjust V_{CC} until V_{CE} equals 0 V
i. Record V_{CC}, V_{CE}, V_{BB}, & V_{BE} in table P.1
j. Calculate the voltage across R_B to calculated and record current I_B in table P.1
k. Calculate the voltage across R_C to calculated and record current I_C in table P.1
l. Adjust V_{CE} from 0V to 2V in .2V steps, repeating steps (i)-(k) at each step
m. Adjust V_{CE} from 2V to 10V in 1V steps, repeating steps (i)-(k) at each step.

Measuring the $I_B=30\mu A$ curve

a. Repeat steps (a)-(n) above, but in step (g) adjust V_{BB} until $I_B=30\mu A$; you will need to calculate the current I_B from the voltage across R_B.

Measuring the $I_B=50\mu A$ curve

a. Repeat steps (a)-(n) above, but in step (g) adjust V_{BB} until $I_B=50\mu A$; you will need to calculate the current I_B from the voltage across R_B.

Figure L.1 – Test circuit to generate family of IV-curves for an NPN BJT
Part III – Data Analysis

1. Plot a family of IV-Curves for the data collected for Calculated Values & Measured Values, in table P.1
2. Extract a few values for IB, VCE, IC, and VBE from the curve-tracer plots, place these in another set of columns in table P.1
3. Compare the Calculated, Simulated, Measured (curve-tracer & keithley measured values) via graphs (overlaying them where possible) and percentage error in all cases.