Introduction:

- There are two types of problems:

 ✓ Problems whose time complexity is polynomial: $O(\log n)$, $O(n)$, $O(n \log n)$, $O(n^2)$, $O(n^3)$

 Examples: searching, sorting, merging, MST, etc.

 ✓ Problems with exponential time complexity: $O(2^n)$, $O(n!)$, $O(n^n)$, etc.

 Examples: TSP, n-queen, 0/1 knapsack, etc.

- Two classes of algorithms:

 ✓ P: The set of all problems, which can be solved by deterministic algorithms in polynomial time.

 ✓ NP: The set of all problems which can be solved by nondeterministic algorithms in polynomial time (NP: Nondeterministic Polynomial)
Non-deterministic algorithms:

- Unlike deterministic algorithms, each operation has several outcomes

- Example:
 - $x = \text{choice}(1..n)$;
 - x may have any value between 1 and n
 - The time of this type of instruction is $O(1)$.
 - If there is a solution, the algorithm will terminate successfully; otherwise, it will terminate unsuccessfully.

Example1: Searching problem:

- input: $A(1..n)$ and x
- Output: index j such that $A(j)=x$ if x is in A or $j=0$ if x does not belong to A.

```
Ndsearch(A(1..n), x)
Integer j;
Begin
    J=choice(1..n);
    If A(j) =x
        Then
            Print(j);
        Else
            Print(0);
    Endif;
End;
```

- The complexity is $O(1)$;
Example 2: clique problem

- Definition: A maximal complete subgraph of a graph \(G=(V,E) \) is a clique.

- Input: - a graph \(G=(V,E) \) and an integer \(k \);
- Output: Determine if \(G \) has a clique of size at least \(k \).

- Brute force approach:

 ✓ The obvious way to solve this problem would be to subject all \(\binom{|V|}{k} \) subsets of \(V \) with cardinality \(k \) to test whether there is a clique.

- \(\text{Ndclique}(G,k) \);

 Integer \(I; X[1..n] \);
 Begin
 For \(I=1 \) to \(k \) do
 \(X[I] = \text{choice}(1..n) \);
 Endfor;
 If(\(X[1], X[2], ..., X[k] \)) is a clique
 Then
 print ("SUCCESS");
 else
 print("FAILURE");
 endif;
 end;
Example 3: Satisfiability: has a special role in the theory of computation.

- Definitions:
 - A literal is a boolean variable (its value is either true or false).
 - A logical formula is an expression that can be constructed using literals and the operations AND and OR.
 - The satisfiability problem is to determine if a logical formula is true for some assignment of truth values to the variables.

- Example:
 \[
 F = (x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)
 \]

 where \(x_i \in \{0,1\} \) \(1 \leq i \leq 3 \) and \(C_i \) are called clauses

- Is there an assignment of truth values to the variables \(x_i \)'s that makes the formula \(F \) true ("Satisfies " it)?

- For \(n \) variables, one should consider \(2^n \) possible assignments.
• Ndsatisfiability(E,n)
 Integer i;
 Begin
 For i=1 to n do
 x_i = choice(true, false);
 Endfor;
 If E(x_1, x_1, ..., x_n) is true
 Then
 Print "success";
 Else
 Print "Failure";
 Endif;
 End;

• Let n be the number of variables and p be the number of
 operations ANDs and Ors, the Ndsatisfiability takes
 O(max(n,p))

 Since in general p>>n, we have O(p).

NP-Complete problems:

• The theory of NP-completeness consists of two classes of
 problems:

 ✓ NP-complete problems
 ✓ NP-hard problems

• NP-hard problems:
 ✓ If an NP-hard problem can be solved in
 polynomial time then all NP-complete
 problems can be solved in polynomial
 time.
✓ In other words: A problem is NP-hard if every problem in NP is transformable to it

• NP-complete problems:

✓ A problem which is NP-complete will have the property that it can be solved in polynomial time iff all other NP-complete problems can be solved in polynomial time.

✓ In other words: A problem is NP-complete if it is both NP-hard and NP.

• Note:

✓ NP-complete problems are NP-hard
✓ All NP-hard problems are not NP-complete.

※ Open problem: $P = \text{NP}$

• Definition of reduction: \propto
✓ A1 is defined by T and A2, where T is a polynomial transformation

✓ A1 ≡ (T,A2) → P1 ∝ P2
 We say that P1 is reduced to P2.

✓ If P2 is polynomial, then P1 is also polynomial.

⇓ NP-complete:
• A problem is NP-complete:
 1) if A is NP
 2) every NP problem Q: Q ∝ P

⇓ Cook's theorem: Satisfiability is NP-Complete

• Theorem: If P1 ∝ P2 and P2 ∝ P3 → P1 ∝ P3

Proof:
T is polynomial since T_1 and T_2 are polynomial $P_1 \preceq P_3$.

T is polynomial since T_1 and T_2 are polynomial $P_1 \preceq P_3$.
Theorem: Given a problem P, If
1) P is NP and
3) \(\exists \) NP-complete problem Q: Q \(\propto \) P
Then P is NP-complete.

Proof:
We have to prove that P is NP and every NP problem R, R \(\propto \) P

- P is NP be definition
- Let R be in NP

R \(\propto \) Q since Q is NP-complete by definition

And Q \(\propto \) P by definition

R \(\propto \) Q and Q \(\propto \) P \(\Rightarrow \) R \(\propto \) P for every NP problem R.

Corollaire:
To prove a new problem P is NP-complete, we first prove that it is NP, and then find an NP-complete problem Q that reduces to P.
Example: Node cover problem:

- Definition: Given a graph $G=(V,E)$, a subset S of V is a node cover of G iff all edges are incident to at least one vertex in S.

$S = \{1,2\}$